Optionally, uplink scheduling time-domain resources in different self-contained scheduling units may be at different positions. For example, as illustrated in FIG. 9, the starting symbol of the uplink scheduling time-domain resource may specifically be a starting symbol of a control channel of a short format at the tail of a slot, and the ending symbol of the uplink scheduling time-domain resource may specifically be an ending symbol of the control channel of the short format. Or, the starting symbol of the uplink scheduling time-domain resource may be a first symbol immediately next to an uplink and downlink switching symbol, and the ending symbol of the uplink scheduling time-domain resource may be a symbol immediately previous to the starting symbol of the control channel of the short format. Or, the starting symbol of the uplink scheduling time-domain resource may be a first symbol immediately next to the uplink and downlink switching time period, and the ending symbol of the uplink scheduling time-domain resource may be the ending symbol of the control channel of the short format. However, the embodiment of the disclosure is not limited thereto.
Optionally, if uplink data transmission resources allocated by the network device for the terminal device include different subcarrier spacings, it may be defined or preconfigured in the protocol that time-domain lengths of multiple uplink scheduling time-domain resources with different subcarrier spacings are kept consistent. For example, the multiple uplink scheduling time-domain resources with different subcarrier spacings may be based on the uplink scheduling time-domain resource with a largest time-domain granularity. However, the embodiment of the disclosure is not limited thereto.