白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Systems and methods for updating software in a hazard detection system

專利號
US11175900B2
公開日期
2021-11-16
申請人
GOOGLE LLC(US CA Mountain View)
發(fā)明人
Jonathan Solnit; Kelly Veit; Edwin H. Satterthwaite, Jr.; Jeffery Theodore Lee
IPC分類
G06F11/00; G06F8/65; G06F9/4401; G09C1/00; G08B17/10; G06F8/656; G06F21/57; G06F21/44
技術領域
hazard,alarm,processor,alarming,system,update,safety,may,software,state
地域: CA CA Mountain View

摘要

Systems and methods for updating software in a hazard detection system are described herein. Software updates may be received by, stored within, and executed by a hazard detection system, without disturbing the system's ability to monitor for alarm events and sound an alarm in response to a monitored hazard event. The software updates may be received as part of a periodic over-the-air communication with a remote server or as part of a physical connection with a data source such as a computer. The software updates may include several portions of code designed to operate with different processors and/or devices within the hazard detection system. The software updates may also include language specific audio files that can be accessed by the hazard detection system to play back language specific media files via a speaker.

說明書

Compared to processor 210, processor 230 is a less power consuming processor. Thus by using processor 230 in lieu of processor 210 to monitor a subset of sensors 220 yields a power savings. If processor 210 were to constantly monitor sensors 220, the power savings may not be realized. In addition to the power savings realized by using processor 230 for monitoring the subset of sensors 220, bifurcating the processors also ensures that the safety monitoring and core monitoring and alarming features of system 205 will operate regardless of whether processor 210 is functioning. By way of example and not by way of limitation, system processor 210 may comprise a relatively high-powered processor such as Freescale Semiconductor K60 Microcontroller, while safety processor 230 may comprise a relatively low-powered processor such as a Freescale Semiconductor KL15 Microcontroller. Overall operation of hazard detection system 205 entails a judiciously architected functional overlay of system processor 210 and safety processor 230, with system processor 210 performing selected higher-level, advanced functions that may not have been conventionally associated with hazard detection units (for example: more advanced user interface and communications functions; various computationally-intensive algorithms to sense patterns in user behavior or patterns in ambient conditions; algorithms for governing, for example, the brightness of an LED night light as a function of ambient brightness levels; algorithms for governing, for example, the sound level of an onboard speaker for home intercom functionality; algorithms for governing, for example, the issuance of voice commands to users; algorithms for uploading logged data to a central server; algorithms for establishing network membership; algorithms for facilitating updates to the programmed functionality of one or more elements of the hazard detection system 205 such as the safety processor 230, the high power wireless communications circuitry 212, the low power wireless communications circuitry 214, the system processor 210 itself, etc., and so forth), and with safety processor 230 performing the more basic functions that may have been more conventionally associated with hazard detection units (e.g., smoke and CO monitoring, actuation of shrieking/buzzer alarms upon alarm detection). By way of example and not by way of limitation, system processor 210 may consume on the order of 18 mW when it is in a relatively high-power active state and performing one or more of its assigned advanced functionalities, whereas safety processor 230 may only consume on the order of 0.05 mW when it is performing its basic monitoring functionalities. However, again by way of example and not by way of limitation, system processor 210 may consume only on the order of 0.005 mW when in a relatively low-power inactive state, and the advanced functions that it performs are judiciously selected and timed such that the system processor is in the relatively high power active state only about 0.05% of the time, and spends the rest of the time in the relatively low-power inactive state. Safety processor 230, while only requiring an average power draw of 0.05 mW when it is performing its basic monitoring functionalities, should of course be performing its basic monitoring functionalities 100% of the time. According to one or more embodiments, the judiciously architected functional overlay of system processor 210 and safety processor 230 is designed such that hazard detection system 205 can perform basic monitoring and shriek/buzzer alarming for hazard conditions even in the event that system processor 210 is inactivated or incapacitated, by virtue of the ongoing operation of safety processor 230. Therefore, while system processor 210 is configured and programmed to provide many different capabilities for making hazard detection unit 205 an appealing, desirable, updatable, easy-to-use, intelligent, network-connected sensing and communications node for enhancing the smart-home environment, its functionalities are advantageously provided in the sense of an overlay or adjunct to the core safety operations governed by safety processor 230, such that even in the event there are operational issues or problems with system processor 210 and its advanced functionalities, the underlying safety-related purpose and functionality of hazard detector 205 by virtue of the operation of safety processor 230 will continue on, with or without system processor 210 and its advanced functionalities.

權利要求

1
微信群二維碼
意見反饋