Low power wireless communications circuitry 214 can be a low power Wireless Personal Area Network (6LoWPAN) module or a ZigBee module capable of communicating according to an 802.15.4 protocol. For example, in one embodiment, circuitry 214 can be part number EM357 SoC available from Silicon Laboratories. Depending on the operating mode of system 205, circuitry 214 can operate in a relatively low power “l(fā)isten” state or a relatively high power “transmit” state. When system 205 is in the Idle mode, WiFi update mode (which may require use of the high power communication circuitry 212), or software update mode, circuitry 214 can be in the “l(fā)isten” state. When system 205 is in the Alarm mode, circuitry 214 can transmit data so that the low power wireless communications circuitry in system 207 can receive data indicating that system 205 is alarming. Thus, even though it is possible for high power wireless communications circuitry 212 to be used for listening for alarm events, it can be more power efficient to use low power circuitry 214 for this purpose. Power savings may be further realized when several hazard detection systems or other systems having low power circuitry 214 form an interconnected wireless network.