The hyper-kernel can be ported to all major microprocessors, memory, interconnect, persistent storage, and networking architectures. Further, as hardware technology evolves (e.g., with new processors, new memory technology, new interconnects, and so forth), the hyper-kernel can be modified as needed to take advantage of industry evolution.
As shown in FIG. 4B, operating system 456 is running collectively across a series of nodes (458-462), each of which has a hyper-kernel running on server hardware. Specifically, the operating system is running on a virtual environment that is defined by the collection of hyper-kernels. As will be described in more detail below, the view for operating system 456 is that it is running on a single hardware platform that includes all of the hardware resources of the individual nodes 458-462. Thus, if each of the nodes includes 1 TB of RAM, the operating system will have as a view that it is running on a hardware platform that includes 3 TB of RAM. Other resources, such as processing power, and I/O resources can similarly be collectively made available to the operating system's view.
FIG. 5 depicts an example of an operating system's view of hardware on an example system. Specifically, operating system (502) runs on top of processors 504-508 and physical shared memory 510. As explained above, an operating system can run on either a traditional computing system or on an enterprise supercomputer such as is shown in FIG. 1. In either case, the view of the operating system will be that it has access to processors 504-508 and physical shared memory 510.