白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Information processing device, learning method, and storage medium

專利號
US11176327B2
公開日期
2021-11-16
申請人
FUJITSU LIMITED(JP Kawasaki)
發(fā)明人
Yuji Mizobuchi
IPC分類
G06F40/58; G06F40/30; G06F16/00; G06F40/45; G06F40/216; G06F40/284; G06N20/00
技術領域
word,learning,language,words,parameter,in,section,target,space,vector
地域: Kawasaki

摘要

A non-transitory computer-readable storage medium storing a program that causes a computer to execute a process, the process includes learning distributed representations of words included in a word space of a first language using a learner for learning the distributed representations; classifying words included in a word space of a second language different from the first language into words common to words included in the word space of the first language and words not common to words included in the word space of the first language; and replacing distributed representations of the common words included in the word space of the second language with distributed representations of the words, corresponding to the common words, in the first language and adjusting a parameter of the learner.

說明書

A process of learning a distributed representation by the distributed representation learning section 11 is described with reference to FIGS. 3A to 3C. FIGS. 3A to 3C are diagrams illustrating an example of the process of learning a distributed representation according to the embodiment. In FIGS. 3A to 3C, a technique for producing a distributed representation of a word is described as the Skip-gram model of Word2Vec. The example assumes that the reference language is English and that the target language is Japanese. The example also assumes that the reference language learning corpus 21 indicates that “I drink apple juice ? ? ? ”.

The distributed representation learning section 11 builds a neural network composed of an input layer, a hidden layer, and an output layer for the Skip-gram model.

First, the input layer, the hidden layer, and the output layer are described below. A V-th dimensional input vector x corresponding to a given word is input to the input layer. The input vector x is a one-hot vector. V indicates the number of words included in the reference language learning corpus 21. The one-hot vector indicates that an element corresponding to the given word is 1 and that other elements are 0.

In the hidden layer, an N-th dimensional word vector h indicating a distributed representation of the given word “apple” is finally generated. W a weight between the input layer and the hidden layer and is expressed by a matrix of V×N. As initial states of elements of WV×N is random values are given, for example.

權利要求

1
微信群二維碼
意見反饋