In some scenarios, pre-defined rules or profiles are used to make this value selection. For example, a first one of the possible threshold values is selected when 1-10 communication collisions occurred during a time period, the first RFID tag is located near a POS station or an entryway, and greater than 20 other second RFID tags are located in proximity to the first RFID tag. A second one of the possible threshold values is selected when it has been more than 1 minute since the first RFID tag received a last interrogation signal, and the RFID tag is intended for theft prevention purpose. A third one of the possible threshold values is selected when the first RFID tag's power source level of charge is below a given value and the RFID tag is intended for inventorying purposes, and so on. The present solution is not limited to the particulars of this example.
The value selection of 1406 can be performed by the first RFID tag, a tag reader, and/or a server. Also, the value can be generated in accordance with an algorithm rather than selected from a pre-defined list of possible threshold values as described above. For example, a weighting algorithm can be employed to compute a collective value. The collective value can comprise the threshold value, or can be translated into a threshold value (e.g., via a look-up table or other mathematical algorithm). The weighting algorithm is defined by the following mathematical equation (1). VC=w1C+w2T+w3P+w4U+w5L+w6N+w7E+w8S??(1)