白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Systems and methods for operating a tag

專利號(hào)
US11176335B2
公開日期
2021-11-16
申請(qǐng)人
Sensormatic Electronics, LLC(US FL Boca Raton)
發(fā)明人
Steve E. Trivelpiece; Craig E. Trivelpiece; Eric F. Riggert
IPC分類
G06K7/10; G06K19/07; G06K7/00
技術(shù)領(lǐng)域
tag,rfid,tags,tag's,or,in,e.g,reader,motion,wot
地域: FL FL Boca Raton

摘要

Systems and methods for operating a Radio Frequency Identification (“RFID”) tag. The methods comprise: monitoring a level of Radio Frequency (“RF”) energy being received by the RFID tag; performing operations by a circuit of the RFID tag to compare the level of RF energy in a given frequency band to a first threshold value; and transitioning an operational mode of the RFID tag from a first operational mode in which a receiver is disabled to a second operational mode in which the receiver is enabled, when the level of RF energy exceeds the first threshold value. The RFID tag is able to communicate with a remote tag reader when the RFID tag is in the second operational mode and not when the RFID tag is in the first operational mode.

說明書

The present solution can use standard RFID tags and readers (with a software update) but could be designed to incorporate the functioning into a new and compatible RFID tag chip as well. Initially, the RFID tag would need to be supplemented with a rechargeable power source (e.g., a battery and/or a capacitor), a Central Processing Unit (“CPU”), an accelerometer and/or motion detector. In addition, hardware and/or software is provided to (a) detect a Received Signal Strength Indicator (“RSSI”) or energy of an incoming RF signal, (b) determine if the detected RSSI or energy is greater than a software selectable threshold level, and/or (c) respond based on algorithms implemented into software of the tag system. The present solution can be used with tags that do not comprise motion detectors.

Just as in normal RFID implementations, RFID tag readers are constantly scanning their Field Of View (“FOV”) and requesting that all tags in its coverage area respond to interrogation signals. In some scenarios, the present solution solves these problems with two features: (A) time based RFID tag receiver control; and (B) motion based RFID tag receiver control. The RFID tag control of (A) involves controlling the RFID tag so that it only enables its receiver periodically under system control. This is for improved static inventory counting. The RFID receiver control of (B) involves turning on the RFID receiver when motion is detected and continuing to receive interrogation signals while in motion. This is for loss prevention and tag location tracking.

權(quán)利要求

1
微信群二維碼
意見反饋