白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Living body recognition method, storage medium, and computer device

專利號
US11176393B2
公開日期
2021-11-16
申請人
TENCENT TECHNOLOGY (SHENZHEN) COMPANY LIMITED(CN Shenzhen)
發(fā)明人
Shuang Wu; Shouhong Ding; Yicong Liang; Yao Liu; Jilin Li
IPC分類
G06K9/62; G06K9/00; G06T7/194
技術領域
facial,image,liveness,confidence,model,training,live,target,feature,face
地域: Shenzhen

摘要

A face liveness recognition method includes: obtaining a target image containing a facial image; extracting facial feature data of the facial image in the target image; performing face liveness recognition according to the facial feature data to obtain a first confidence level using a first recognition model, the first confidence level denoting a first probability of recognizing a live face; extracting background feature data from an extended facial image, the extended facial image being obtained by extending a region that covers the facial image; performing face liveness recognition according to the background feature data to obtain a second confidence level using a second recognition model, the second confidence level denoting a second probability of recognizing a live face; and according to the first confidence level and the second confidence level, obtaining a recognition result indicating that the target image is a live facial image.

說明書

Specifically, the initialized first recognition model may be a first recognition model with model parameters that is obtained by importing the model parameters of a trained general-purpose machine learning model with recognition capabilities into a first recognition model structure. The model parameter carried in the first recognition model participates in the training as an initial parameter used to train the first recognition model. The initialized first recognition model may also be a machine learning model initialized by a developer based on historical model training experience. The server directly uses the model parameter carried in the initialized machine learning model as the initial parameter for training the first recognition model, and applies the model parameter to the training. Parameter initialization of the first recognition model may be Gaussian random initialization.

Further, the server may add a training label to each first training sample. The training label is used to indicate whether the image sample from which the first training sample is obtained is a live facial image. The server then trains the first recognition model according to the first training sample and the corresponding added training label. In the specific training process, after the first training sample is output from the first recognition model, the first recognition model will output a first recognition result. In this case, the server may compare the first recognition result with the training label of the input first training sample, and adjust the model parameters of the first recognition model with a view to reducing differences.

權利要求

1
微信群二維碼
意見反饋