白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Living body recognition method, storage medium, and computer device

專利號
US11176393B2
公開日期
2021-11-16
申請人
TENCENT TECHNOLOGY (SHENZHEN) COMPANY LIMITED(CN Shenzhen)
發(fā)明人
Shuang Wu; Shouhong Ding; Yicong Liang; Yao Liu; Jilin Li
IPC分類
G06K9/62; G06K9/00; G06T7/194
技術(shù)領(lǐng)域
facial,image,liveness,confidence,model,training,live,target,feature,face
地域: Shenzhen

摘要

A face liveness recognition method includes: obtaining a target image containing a facial image; extracting facial feature data of the facial image in the target image; performing face liveness recognition according to the facial feature data to obtain a first confidence level using a first recognition model, the first confidence level denoting a first probability of recognizing a live face; extracting background feature data from an extended facial image, the extended facial image being obtained by extending a region that covers the facial image; performing face liveness recognition according to the background feature data to obtain a second confidence level using a second recognition model, the second confidence level denoting a second probability of recognizing a live face; and according to the first confidence level and the second confidence level, obtaining a recognition result indicating that the target image is a live facial image.

說明書

A training stop condition may be that a preset number of iterations is reached, or a trained machine learning model accomplishes a classification performance indicator. The classification performance indicator may be a classification correctness rate reaching a first preset threshold, or a classification error rate being lower than a second preset threshold.

The server may also separate a part of training samples from first training samples for use as test samples. The test samples are samples used for model calibration after model training. The trained first recognition model is calibrated with a test sample. Specifically, the test sample may be input into the trained first recognition model, and an output of the first recognition model is compared with a training label of the test sample. If a difference between the two falls within a permitted error range, the calibration of the first recognition model is completed. If the difference between the two falls outside the permitted error range, the parameters of the first recognition model are adjusted to reduce the difference between the two until completion of the calibration of the first recognition model.

The server may also establish a cost function according to an actual output and an expected output of the first recognition model, minimize the cost function using a stochastic gradient descent method, and update the model parameters of the first recognition model. The cost function may be, for example, a variance cost function or a cross-entropy cost function.

In one embodiment, the first recognition model is trained with a live facial image and a non-live facial image. The model parameters may be adjusted dynamically according to classification performance of the machine learning model, so that a training task can be completed more accurately and efficiently.

權(quán)利要求

1
微信群二維碼
意見反饋