白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Living body recognition method, storage medium, and computer device

專利號
US11176393B2
公開日期
2021-11-16
申請人
TENCENT TECHNOLOGY (SHENZHEN) COMPANY LIMITED(CN Shenzhen)
發(fā)明人
Shuang Wu; Shouhong Ding; Yicong Liang; Yao Liu; Jilin Li
IPC分類
G06K9/62; G06K9/00; G06T7/194
技術(shù)領(lǐng)域
facial,image,liveness,confidence,model,training,live,target,feature,face
地域: Shenzhen

摘要

A face liveness recognition method includes: obtaining a target image containing a facial image; extracting facial feature data of the facial image in the target image; performing face liveness recognition according to the facial feature data to obtain a first confidence level using a first recognition model, the first confidence level denoting a first probability of recognizing a live face; extracting background feature data from an extended facial image, the extended facial image being obtained by extending a region that covers the facial image; performing face liveness recognition according to the background feature data to obtain a second confidence level using a second recognition model, the second confidence level denoting a second probability of recognizing a live face; and according to the first confidence level and the second confidence level, obtaining a recognition result indicating that the target image is a live facial image.

說明書

In an embodiment, the inputting the facial image into a first recognition model and extracting facial feature data of the facial image through the first recognition model include: inputting the facial image into the first recognition model; and extracting facial feature data of the facial image through a convolution layer of the first recognition model. The performing face liveness recognition according to the facial feature data to obtain a first confidence level includes: classifying the target image through a fully connected layer of the first recognition model according to the extracted facial feature data to obtain a first confidence level of the target image being a live facial image.

In an embodiment, when executed by a processor, the computer program further causes the processor to perform the following operations: obtaining an image sample set, where the image sample set includes a live facial image and a non-live facial image; obtaining a facial image in a corresponding image sample along a facial region of each image sample in the image sample set to obtain a first training sample; and training the first recognition model according to the first training sample.

In an embodiment, the training the first recognition model according to the first training sample includes: obtaining an initialized first recognition model; determining a first training label corresponding to the first training sample; inputting the first training sample into the first recognition model to obtain a first recognition result; and adjusting model parameters of the first recognition model according to a difference between the first recognition result and the first training label, and continuing training until satisfaction of a training stop condition.

權(quán)利要求

1
微信群二維碼
意見反饋