Each of the 3D points have a horizontal coordinate (e.g., x-value), vertical coordinate (e.g., y-value) and depth coordinate (e.g., z-value) defined by the point cloud 406 of the 3D image 404. Plane 408 indicates depth coordinates (z-values) defined in the original point cloud 406 of the 3D image, for example, depth coordinates Z1 (450), Z2 (452), and Ze (454), where Ze defines the “end” Z coordinate of the depth axis in the 3D point cloud.
In some embodiments, the 3D image 404 could include rules that define the 3D point cloud 406. For example, in some embodiments, the rules can require the 3D points to be defined in a certain ordering, sequence or format, such as with the ordering, sequencing, and formatting required by a 3D file format, e.g., the PLY or PCD file formats.
The 3D points (e.g., points 460, 462, and 464) in 3D point cloud 406 can each have a corresponding 2D coordinate pair (i.e., a horizontal and vertical coordinate pair) with respect to a 2D-axis of 3D image 404. As described above, there may be a direct mapping of the points of the 3D image 404 with respect to the 2D matrix points of the 2D image matrix 402. In other aspects, there may be no direct mapping of the points of the 3D image 404 with respect to the 2D matrix points of the 2D image matrix 402, such that a 3D point in the point cloud 406 resides within a rectangular 3D space defined by four 2D matrix points (not shown) of the 2D image matrix 402. For example, 3D point 464 resides within a 3D space defined by four 2D matrix points, for example, 2D matrix points (X17, Y3), (X18, Y3), (X17, Y4) and (X18, Y4) of the 2D image matrix 402, and has a depth coordinate (e.g., z-value) of Z4.