In certain embodiments, the number of threads operating in parallel may be determined based on the computing device, such as any of the computing devices of FIGS. 1 and 2, that implements Distification. For example, a computing device with 4 CPU cores may run 4 threads at once. However, a more powerful computer, with 8 CPU cores, may run 10 threads at once.
The Distify method may also be implemented across several computing devices or systems (each having their own unique number of CPU cores) at once in a networked environment, for example, across any one or more of the computing devices shown in FIG. 2. In such an embodiment, the networked computers can be configured to Distify images or frames in a shared configuration, where certain computers can be allocated different workloads or threading tasks depending, for example, on the processing power of the individual computers. For example, a network of 10 computers may be used where the 3D data is allocated across the network, where 4 computers each having 4 CPU cores each run 4 Distification threads, and where the remaining 6 computers each having 8 CPU cores and each run 10 Distification threads, for a total of 84 total Distification threads allocated across the shared network running at the same time.
3D Image Distification and Prediction Models
Distify can be performed, for example, as a preprocessing technique for a variety of applications, including, for example, for generating output feature vectors used to train 3D predictive models or used as input into such predictive models to make predictions with respect to 3D imagery. In various embodiments described herein, the a 3D prediction model may be used to determine a risk factor associated with user activity or behavior.