白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Systems and methods for 3D image distification

專利號(hào)
US11176414B1
公開日期
2021-11-16
申請(qǐng)人
STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY(US IL Bloomington)
發(fā)明人
Elizabeth Flowers; Puneit Dua; Eric Balota; Shanna L. Phillips
IPC分類
G06K9/62; G06K9/42; G06K9/00
技術(shù)領(lǐng)域
3d,2d,image,images,or,computing,matrix,in,2d3d,model
地域: IL IL Bloomington

摘要

Systems and methods are described for Distification of 3D imagery. A computing device may obtain a three dimensional (3D) image that includes rules defining a 3D point cloud used to generate a two dimensional (2D) image matrix. The 2D image matrix may include 2D matrix point(s) mapped to the 3D image, where each 2D matrix point can be associated with a horizontal coordinate and a vertical coordinate. The computing device can generate an output feature vector that includes, for at least one of the 2D matrix points, the horizontal coordinate and the vertical coordinate of the 2D matrix point, and a depth coordinate of a 3D point in the 3D point cloud of the 3D image. The 3D point can have a nearest horizontal and vertical coordinate pair that corresponds to the horizontal and vertical coordinates of the at least one 2D matrix point.

說(shuō)明書

A CNN can learn the values of the filters on its own during the training process, as described herein. Typically, the more filters, the more image features get extracted and the better the CNN becomes at recognizing patterns or features in images. The size of a feature map can be controlled by parameters determined before the convolution is performed. These parameters can include the “depth” of, or number of filters used, for the convolution operation, which can be used to produce different feature maps. Feature maps may be envisioned as stacked 2D matrices of the image, so that a feature map using three filters would have a depth of three. Another parameter can be the “stride” value which is the is the number of pixels by which a filter slides over the image. Having a larger stride will produce smaller feature maps. Another parameter relates to “zero-padding,” which is a method to pad the input image with zeros around the border. Padding allows control of the size of the feature maps.

Non-linearity is another operation or layer that can be used in a CNN. This operator is used to introduce non-linearity in into a CNN model because most real-world images and image data are non-linear. In contrast, the convolution operation is linear and provides an element-wise matrix multiplication and addition. Accordingly, non-linearity can be introduced into the model via a non-linear function such as ReLU, Tan h, or Sigmoid to improve the accuracy of the prediction model. For example, ReLU stands for Rectified Linear Unit and is an element-wise operation (applied per pixel) and can replace all negative pixel values in the feature map with different values, such as a zero value. The output feature map of the ReLU function can be referred to as the ‘Rectified’ feature map.

權(quán)利要求

1
微信群二維碼
意見反饋