白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Systems and methods for 3D image distification

專利號(hào)
US11176414B1
公開(kāi)日期
2021-11-16
申請(qǐng)人
STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY(US IL Bloomington)
發(fā)明人
Elizabeth Flowers; Puneit Dua; Eric Balota; Shanna L. Phillips
IPC分類
G06K9/62; G06K9/42; G06K9/00
技術(shù)領(lǐng)域
3d,2d,image,images,or,computing,matrix,in,2d3d,model
地域: IL IL Bloomington

摘要

Systems and methods are described for Distification of 3D imagery. A computing device may obtain a three dimensional (3D) image that includes rules defining a 3D point cloud used to generate a two dimensional (2D) image matrix. The 2D image matrix may include 2D matrix point(s) mapped to the 3D image, where each 2D matrix point can be associated with a horizontal coordinate and a vertical coordinate. The computing device can generate an output feature vector that includes, for at least one of the 2D matrix points, the horizontal coordinate and the vertical coordinate of the 2D matrix point, and a depth coordinate of a 3D point in the 3D point cloud of the 3D image. The 3D point can have a nearest horizontal and vertical coordinate pair that corresponds to the horizontal and vertical coordinates of the at least one 2D matrix point.

說(shuō)明書(shū)

The output from the convolutional, pooling, and non-linearity operations can represent high-level features of the input image and may further be used to generate a fully connected layer that ultimately provides the classification value(s). In CNNs, the term “Fully Connected” implies that every “neuron” (or node) in the previous layer is connected to every neuron on the next layer. For example, with respect to the above embodiment, there may be 128 fully connected layers. A fully connected layer, such as the 128 fully connected layers of the previous embodiment, can be used to generate classifications or provide predictions from the CNN model. In some CNN model embodiments, the sum of output probabilities from the fully connected layer is the value “1,” although the CNN model can also be modified to sum some other value, such as, e.g., “100.”

The CNN model may use the features learned from the convolutional, pooling, and non-linearity, and fully connected operations for classifying the input image into various classes based on a training dataset. Training a CNN can involve determining optimal weights and parameters of the CNN (as used in the various CNN operations described herein) to accurately classify images from the training set, and therefore, allow for better predictions. As described herein, the convolution, non-linearity, and pooling operators act as feature extractors from an input image and the fully connected layer acts as a classifier. For example, when a new (unseen) image is input into a CNN, the CNN can perform a forward propagation to output a probability for each class.

權(quán)利要求

1
微信群二維碼
意見(jiàn)反饋