白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Systems and methods for 3D image distification

專利號
US11176414B1
公開日期
2021-11-16
申請人
STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY(US IL Bloomington)
發(fā)明人
Elizabeth Flowers; Puneit Dua; Eric Balota; Shanna L. Phillips
IPC分類
G06K9/62; G06K9/42; G06K9/00
技術(shù)領(lǐng)域
3d,2d,image,images,or,computing,matrix,in,2d3d,model
地域: IL IL Bloomington

摘要

Systems and methods are described for Distification of 3D imagery. A computing device may obtain a three dimensional (3D) image that includes rules defining a 3D point cloud used to generate a two dimensional (2D) image matrix. The 2D image matrix may include 2D matrix point(s) mapped to the 3D image, where each 2D matrix point can be associated with a horizontal coordinate and a vertical coordinate. The computing device can generate an output feature vector that includes, for at least one of the 2D matrix points, the horizontal coordinate and the vertical coordinate of the 2D matrix point, and a depth coordinate of a 3D point in the 3D point cloud of the 3D image. The 3D point can have a nearest horizontal and vertical coordinate pair that corresponds to the horizontal and vertical coordinates of the at least one 2D matrix point.

說明書

In other embodiments, the 3D imagery, and rules defining the 3D point cloud, are obtained from one or more respective PLY files or PCD files. The 3D imagery may be a frame from a 3D movie. The 3D images may be obtained from various computing devices, including, for example, any of a camera computing device, a sensor computing device, a scanner computing device, a smart phone computing device, or a tablet computing device.

In other embodiments, Distification can be executed in parallel such that the computing device, or various networked computing devices, can Distify multiple 3D images at the same time.

Distification can be performed, for example, as a preprocessing technique for a variety of applications, for example, for use with 3D predictive models. For example, systems and methods are disclosed herein for generating an image-based prediction model. As described, a computing device may obtain a set of one or more 3D images from a 3D image data source, where each of the 3D images are associated with 3D point cloud data. In some embodiments, the 3D image data source is a remote computing device (but it can also be collocated). The Distification process can be applied to the 3D point cloud data of each 3D image to generate output feature vector(s) associated with the 3D images. A prediction model may then be generated by training a model with the output feature vectors. For example, in certain embodiments, the prediction model may be trained using a neural network, such as a convolutional neural network.

In some embodiments, training the prediction model can include using one or more batches of output feature vectors, where batches of the output feature vectors correspond to one or more subsets of 3D images from originally obtained 3D images.

權(quán)利要求

1
微信群二維碼
意見反饋