白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Systems and methods for 3D image distification

專利號(hào)
US11176414B1
公開(kāi)日期
2021-11-16
申請(qǐng)人
STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY(US IL Bloomington)
發(fā)明人
Elizabeth Flowers; Puneit Dua; Eric Balota; Shanna L. Phillips
IPC分類
G06K9/62; G06K9/42; G06K9/00
技術(shù)領(lǐng)域
3d,2d,image,images,or,computing,matrix,in,2d3d,model
地域: IL IL Bloomington

摘要

Systems and methods are described for Distification of 3D imagery. A computing device may obtain a three dimensional (3D) image that includes rules defining a 3D point cloud used to generate a two dimensional (2D) image matrix. The 2D image matrix may include 2D matrix point(s) mapped to the 3D image, where each 2D matrix point can be associated with a horizontal coordinate and a vertical coordinate. The computing device can generate an output feature vector that includes, for at least one of the 2D matrix points, the horizontal coordinate and the vertical coordinate of the 2D matrix point, and a depth coordinate of a 3D point in the 3D point cloud of the 3D image. The 3D point can have a nearest horizontal and vertical coordinate pair that corresponds to the horizontal and vertical coordinates of the at least one 2D matrix point.

說(shuō)明書

For example, in certain embodiments as described herein, the 3D model could generate output probabilities, e.g., 0.4, 0.2, and 0.4 for respective classes “safe driving,” “texting,” and “calling.” The 3D output probabilities could be associated with a certain 3D predict action of the predict data structure. Similarly, the 2D model could generate output probabilities e.g., 0.1, 0.5, and 0.4 for respective classes “safe driving,” “texting,” and “calling.” The 2D output probabilities could be associated with a certain 2D predict action of the predict data structure. The 2D and 3D output probabilities could correspond based on, e.g., a same or similar timestamp shared by the 2D and 3D images and related predict actions, thereby, creating a 2D3D image pair, as described above. In certain embodiments, the ensemble model may generate the enhanced prediction by summing the probabilities of each respective class of a 2D3D image pair and determining a 2D3D image pair classification from the class having the maximum summed probability. For example, the 3D output probabilities and 2D output probabilities of the 2D3D image pair described above may be summed to create a 2D3D image pair classification structure having summed classification values of 0.5, 0.7, and 0.8 for respective classes “safe driving,” “texting,” and “calling.” Because the “calling” class has the maximum probability value (0.8), then the ensemble model generates an enhanced prediction of “calling,” thereby classifying the 2D3D image pair, and the driver's behavior at the time the 2D3D image was captured, as a “calling” gesture.

權(quán)利要求

1
微信群二維碼
意見(jiàn)反饋