Distification can also be used for interoperating 3D imagery with 2D imagery. For example, the differing file formats and types are especially problematic when comparing or attempting to interoperate 3D and 2D image types, which typically have vastly different file formats tailored to 3D and 2D imagery, respectively. For example, a 2D JPEG image uses a rasterized grid of pixels to form an image. 2D images are typically concerned with data compression (for file size purposes), color, and relative positioning (with respect to the other pixels) within the rasterized grid forming the image, and are typically not concerned with where the pixels or points of the 2D image that are within, for example, some larger space outside of the rasterized grid. 3D images, on the other hand, depend on 3D coordinates and positioning in 3D space in order to represent a 3D object built, for example, by numerous polygon shapes that each have their own vertices (e.g., x, y and z coordinate positions) that define the position of the polygons, and, ultimately, the object itself in 3D space. Other attributes of a 3D file format may be concerned with color, shape, texture, line size, etc., but such attributes are typically indicated in a 3D file in a completely different format from 2D file formats to accommodate the rendering of the images in 3D space versus 2D rasterisation.