白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Method and system for producing digital image features

專利號
US11176417B2
公開日期
2021-11-16
申請人
International Business Machines Corporation(US NY Armonk)
發(fā)明人
Amit Aides; Amit Alfassy; Leonid Karlinsky; Joseph Shtok
IPC分類
G06K9/62; G06N3/04; G06N3/08
技術(shù)領(lǐng)域
model,prediction,training,features,labels,group,plurality,optionally,score,operator
地域: NY NY Armonk

摘要

A system for generating a set of digital image features, comprising at least one hardware processor adapted for: producing a plurality of input groups of features, each produced by extracting a plurality of features from one of a plurality of digital images; computing an output group of features by inputting the plurality of input groups of features into at least one prediction model trained to produce a model group of features in response to at least two groups of features, such that a model set of labels indicative of the model group of features is similar, according to at least one similarity test, to a target set of labels computed by applying at least one set operator to a plurality of input sets of labels each indicative of one of the at least two groups of features; and providing the output group of features to at least one other processor.

說明書

The present invention, in some embodiments thereof, proposes producing a new multi-label group of features, without explicitly specifying which features to include in the new multi-label group of features, by manipulating two or more groups of features, for example two or more groups of features corresponding with two or more of an existing plurality of digital images. According to some embodiments of the present invention, the two or more groups of features are manipulated by one or more prediction models, such that applying one or more classification models to a new multi-label group of features produced by the one or more prediction models in response to the two or more groups of features produces an output set of labels that is similar, according to one or more similarity tests, to a target set of labels that can be computed by applying one or more set operators to other sets of labels associated with the two or more groups of features. An example of a similarity test is comparing a difference between the output set of labels and the target set of labels to one or more threshold difference values. For example, when the difference between the output set of labels and target set of labels is less than one or more threshold difference values the output set of labels is considered similar to the target set of labels. Optionally, a similarity test comprises comparing an absolute value of a difference to one or more threshold difference values.

權(quán)利要求

1
微信群二維碼
意見反饋