白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Method and system for producing digital image features

專利號(hào)
US11176417B2
公開日期
2021-11-16
申請人
International Business Machines Corporation(US NY Armonk)
發(fā)明人
Amit Aides; Amit Alfassy; Leonid Karlinsky; Joseph Shtok
IPC分類
G06K9/62; G06N3/04; G06N3/08
技術(shù)領(lǐng)域
model,prediction,training,features,labels,group,plurality,optionally,score,operator
地域: NY NY Armonk

摘要

A system for generating a set of digital image features, comprising at least one hardware processor adapted for: producing a plurality of input groups of features, each produced by extracting a plurality of features from one of a plurality of digital images; computing an output group of features by inputting the plurality of input groups of features into at least one prediction model trained to produce a model group of features in response to at least two groups of features, such that a model set of labels indicative of the model group of features is similar, according to at least one similarity test, to a target set of labels computed by applying at least one set operator to a plurality of input sets of labels each indicative of one of the at least two groups of features; and providing the output group of features to at least one other processor.

說明書

Reference is now made again to FIG. 8. For at least one of the plurality of set-operator prediction models, for example set-operator prediction model 510A, in 820 processor 590 provides to the at least one set-operator prediction model the first group of training features as the second input and the second group of training features as the first input, to produce a second model group of features. Optionally, processor 590 applies a mean square error method to the first model group of features and the second model group of features to produce a symmetric reconstruction error score. Optionally processor 590 uses the symmetric reconstruction error score when computing the loss score, for example by adding the symmetric reconstruction error score to the sum of the plurality of model loss scores.

There is a known risk in training a neural network of reaching a state where the neural network generates a common output for a plurality of input samples. This condition is sometimes called mode collapse. To reduce a risk of mode collapse when training the plurality of set-operator prediction models, processor 590 optionally computes one or more mode-collapse reconstruction errors, each indicative of a difference between an original group of features and a reconstructed group of features computed by applying a union operator to an intersection of the original group of features and another group of features and a subtraction of the other group of features from the original group of features. When A depicts the original group of features, B depicts the other group of features, ∪ depicts a union operator, ∩ depicts an intersection operator, and/depicts a subtraction operator, a mode-collapse reconstruction error score is indicative of a difference between A and ((A∩B)∪(A/B)).

權(quán)利要求

1
微信群二維碼
意見反饋