白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Rapid point cloud alignment and classification with basis set learning

專利號(hào)
US11176693B1
公開(kāi)日期
2021-11-16
申請(qǐng)人
Amazon Technologies, Inc.(US WA Seattle)
發(fā)明人
Javier Romero Gonzalez-Nicolas; Sergey Prokudin; Christoph Lassner
IPC分類
G06T7/50; G06T17/00; G06K9/62
技術(shù)領(lǐng)域
cloud,data,point,may,mesh,points,basis,or,e.g,generate
地域: WA WA Seattle

摘要

A system configured to process an input point cloud, which represents an object using unstructured data points, to generate a feature vector that has an ordered structure and a fixed length. The system may process the input point cloud using a basis point set to generate the feature vector. For example, for each basis point in the basis point set, the system may identify a closest data point in the point cloud data and store a distance value or other information associated with the closest data point in the feature vector. The system may process the feature vector using a trained model to generate output data, such as performing point cloud registration to generate mesh data, point cloud classification to generate classification data, and/or the like.

說(shuō)明書

FIG. 8 is a block diagram conceptually illustrating example components of a remote system according to embodiments of the present disclosure.

DETAILED DESCRIPTION

With an increased availability of three-dimensional (3D) scanning technology, point clouds are being used as a rich representation of everyday scenes. However, conventional techniques generate point clouds that are unstructured with a variable number of data points, which can be difficult to process using machine learning algorithms. Some conventional techniques may process the point clouds by applying voxelization, which increases the amount of data stored while at the same time reducing details through discretization. Other conventional techniques may process the point clouds using deep learning models with hand-tailored architectures designed by experts to handle the point clouds directly. However, these architectures use an increased number of parameters and are computationally inefficient.

權(quán)利要求

1
微信群二維碼
意見(jiàn)反饋