白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Method of manufacturing a semiconductor device having redistribution layer including a dielectric layer made from a low-temperature cure polyimide

專利號
US11177165B2
公開日期
2021-11-16
申請人
Taiwan Semiconductor Manufacturing Company, Ltd.(TW Hsin-Chu)
發(fā)明人
Zi-Jheng Liu; Yu-Hsiang Hu; Hung-Jui Kuo
IPC分類
H01L21/768; H01L21/56; H01L23/498; H01L23/525; H01L23/532; H01L23/538; H01L23/31
技術(shù)領(lǐng)域
layer,may,in,be,ghi,polyimide,first,vias,thk,as
地域: Hsinchu

摘要

A method of manufacturing a semiconductor device includes the step of positioning a patterned mask over a dielectric layer. The dielectric layer comprises a low-temperature cure polyimide. The method further includes the steps of exposing a first surface of the dielectric layer through the patterned mask to an I-line wavelength within an I-line stepper, and developing the dielectric layer to form an opening.

說明書

In an embodiment the vias 111 are formed within the photoresist 109. In an embodiment the vias 111 comprise one or more conductive materials, such as copper, tungsten, other conductive metals, or the like, and may be formed, for example, by electroplating, electroless plating, or the like. In an embodiment, an electroplating process is used wherein the first seed layer 107 and the photoresist 109 are submerged or immersed in an electroplating solution. The first seed layer 107 surface is electrically connected to the negative side of an external DC power supply such that the first seed layer 107 functions as the cathode in the electroplating process. A solid conductive anode, such as a copper anode, is also immersed in the solution and is attached to the positive side of the power supply. The atoms from the anode are dissolved into the solution, from which the cathode, e.g., the first seed layer 107, acquires the dissolved atoms, thereby plating the exposed conductive areas of the first seed layer 107 within the opening of the photoresist 109.

Once the vias 111 have been formed using the photoresist 109 and the first seed layer 107, the photoresist 109 may be removed using a suitable removal process (not illustrated in FIG. 1 but seen in FIG. 3 below). In an embodiment, a plasma ashing process may be used to remove the photoresist 109, whereby the temperature of the photoresist 109 may be increased until the photoresist 109 experiences a thermal decomposition and may be removed. However, any other suitable process, such as a wet strip, may alternatively be utilized. The removal of the photoresist 109 may expose the underlying portions of the first seed layer 107.

權(quán)利要求

1
微信群二維碼
意見反饋