The aforementioned amino group is preferably an aromatic amino group represented by —N(Ar)2 (where Ar is an aromatic group). In addition, the N-heterocyclic group is a cyclic amino group and is preferably an N-heterocyclic group such as an N-carbazolyl group, an N-phenoxazinyl group, or an N-phenothiazinyl group bonded at a nitrogen atom at the end of the compound skeleton.
In General Formula R-1, Ar1 to Ar3 represent each independently a divalent C6 to C30 aromatic hydrocarbon group, Ar4 to Ar7 represent each independently a C6 to C30 aromatic hydrocarbon group, and Ar4 and Ar5, and Ar6 and Ar7 are such that the two aromatic hydrocarbon groups constituting Ar4 and Ar5, and Ar6 and Ar7 may bond via a direct bond or via a substituent to form a condensed heterocycle with the N replaced by Ar4 and Ar5, and Ar6 and Ar7. Furthermore, —NAr6Ar7 or —NAr6 and Ar7 may form a cyclic amino group. The condensed heterocycle here shall be understood to be a structure in which there is a heterocycle including an N in the center, and there is an aromatic hydrocarbon group condensed on both sides of this. In concrete terms, an N-carbazolyl group is an example, but a tricyclic compound is not the only option, and it may be tetracyclic or higher and may have a substituent.
L1 and L2 represent each independently a vinylene group or an acetylene group.