白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Devices, structures, materials and methods for vertical light emitting transistors and light emitting displays

專利號
US11177465B2
公開日期
2021-11-16
申請人
Atom H2O, LLC(US CA Escondido)
發(fā)明人
Huaping Li
IPC分類
H01L33/00; H01L51/52; H01L51/56; H01L51/05; H01L27/15; H01L27/32; H01L33/06; H01L33/24; H01L33/28; H01L33/30; H01L33/32; H01L33/34; H01L33/40; H01L33/52; H01L51/00; H01L33/08
技術(shù)領(lǐng)域
nw,ag,vplets,electrode,conductive,electrodes,porous,emitting,dielectric,leps
地域: CA CA Escondido

摘要

Devices, structures, materials and methods for vertical light emitting transistors (VLETs) and light emitting displays (LEDs) are provided. In particular, architectures for vertical polymer light emitting transistors (VPLETs) for active matrix organic light emitting displays (AMOLEDs) and AMOLEDs incorporating such VPLETs are described. Porous conductive transparent electrodes (such as from nanowires (NW)) alone or in combination with conjugated light emitting polymers (LEPs) and dielectric materials are utilized in forming organic light emitting transistors (OLETs). Combinations of thin films of ionic gels, LEDs, porous conductive electrodes and relevant substrates and gates are utilized to construct LETs, including singly and doubly gated VPLETs. In addition, printing processes are utilized to deposit layers of one or more of porous conductive electrodes, LEDs, and dielectric materials on various substrates to construct LETs, including singly and doubly gated VPLETs.

說明書

Transparent conductive electrodes are characterized by benchmark values for transparency and conductivity. A good material for use in VPLET devices should have a high transparency and a low sheet resistance. Currently the state of the art in transparent conductive electrodes is ITO (Indium titanium oxide), which has an excellent combination of high transparency and low sheet resistance. However, ITO is made of low abundance elements, and thus increases device cost. There are many fast-emerging transparent conductive materials like TCO (Transparent conductive oxide), PEDOTs (poly(3,4-ethylenedioxythiophene)) and other highly doped conductive polymers, carbon nanotubes and graphene. (See, e.g., C. Keplinger, et al., Science, vol. 341, pp. 984-987, 2013, the disclosure of which is incorporated herein by reference.) As shown in Table 1, below, under the equivalent transmittance, the sheet resistances of most of these new materials are about 3 to 6 times higher than that of ITO.

TABLE 1 Comparison of Current Transparent Conductive Materials Material Type Typical Transparency Typical Conductivity ITO

權(quán)利要求

1
微信群二維碼
意見反饋
    <blockquote id="8pawg"><i id="8pawg"><video id="8pawg"></video></i></blockquote>

    <blockquote id="8pawg"><p id="8pawg"></p></blockquote>

      1. <blockquote id="8pawg"><i id="8pawg"></i></blockquote><blockquote id="8pawg"><p id="8pawg"></p></blockquote>