As shown in FIG. 12, embodiments of these doubly gated devices are based on printing Ag NW electrode sandwiched PS-PMMA-PS/EMIM TFSI ionic gels, such as are describe in detail in Example 4, above. In some embodiments, on one Ag NW electrodes sandwiched PS-PMMA-PS/EMIM TFSI ionic gel, 200 nm thick LEPs are also printed and laminated with another Ag NW electrodes sandwiched PS-PMMA-PS/EMIM TFSI ionic gel to obtain doubly-gated Ag NW enabled VPLETs with Ag NW electrodes on ionic gel coated Ag NW substrate (as shown in FIG. 12). By adjusting the charge carrier from the top and bottom Ag NW electrodes, the transportation, injection and recombination of charge carriers can be controlled to reach the charge carrier balance for the maximum efficiency and brightness. As in the singly-gated Ag NW enabled VPLETs, doubly-gated Ag NW enabled VPLETs are expected to have >5% external efficiency, >10,000 Cd/m2 brightness, and a full aperture ratio at 4V supply voltage and sub-1 driving voltage when characterized in a glovebox with a Keithley 4200 SCS.
Example 6: VLET Displays
Finally, although the above exemplary embodiments and discussion has focused on methods, architectures and structures for individual devices, it will be understood that the same architectures and structures may be combined as pixels into a VLET display device as shown schematically in FIG. 13. In such an embodiment, a plurality of VLETs as described herein may be combined and interconnected as is well-known by those skilled in the art, such as by electronically coupling the VLETs into addressing electrode lines, to form a TFT-backplane for a display, such as an AMOLED display.
SUMMARY