Metal based materials of the present disclosure were prepared in a water solution. Using the weights of each precursor provided in Table 2, 60.0 g urea and 600 mL deionized water were mixed in a 1000 mL flask. While stirring, the respective metal hydrate was added to the solution. The solution temperature was increased to 90° C. and was held for 3 h under continuous stirring. The solution was then cooled to room temperature. The bulk or coated powders were filtered using a glass microfiber filter and washed with 1000 mL deionized water. The powder was collected and dried in an oven overnight at 120° C. The dried powders were collected for XRD analysis. In order to get bulk metal oxides, 5 grams of dried powder was further calcined at 300 or 500° C. for 4 h under an argon gas atmosphere (see Table 2). These calcined powders were collected for XRD analysis.
PE-1 was used for the preparation of MnCO3 nanoparticles. PE-2 was used for the preparation of Zn5(OH)6(CO3)2 nanoparticles. PE-3 was used for the preparation of magnesium ion containing nanoparticles. PE-4 was used for the preparation of cobalt ion containing nanoparticles. PE-5 was used for the preparation of nickel ion containing nanoparticles. PE-6 was used for the preparation of TiO2 nanoparticles. PE-7 was used for the preparation of Cu2(OH)3(NO3) nanoparticles and was 39.0 wt % loading Cu2(OH)3(NO3) nanoparticle on silicon alloy B. PE-8, PE-9, PE-10, PE-11, PE-12, and PE-13 were used for the preparation of metal oxides CuO, NiO, CoO, MgO, ZnO and MnO, respectively.