Electrochemical energy storage has become an important technology for a variety of applications, including grid storage, electric vehicles, and portable electronic devices. The lithium-ion battery is an attractive energy storage device because of its relatively high energy density and good rate capability. To further increase the energy density for more demanding applications, however, new electrode materials with higher specific and volumetric capacity are desired.
To meet the increasing demand for energy storage capability, electrode materials with higher capacity, low manufacturing cost, and the ability to be produced at large scale have been sought. Alloy-type anodes (such as Si, Ge, Sn, Al, Sb, Pb, P, B, As, and In) have much higher lithium (Li) storage capacity than the intercalation-type graphite anode that is currently used in Li-ion batteries. Among all the alloy anodes, silicon has the highest specific capacity.