白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Electrocatalyst composition comprising noble metal oxide supported on tin oxide

專利號
US11177483B2
公開日期
2021-11-16
申請人
BASF SE(DE Ludwigshafen am Rhein)
發(fā)明人
Andreas Haas; Domnik Bayer; Rosalba Adriana Rincon-Ovalles; Markus Kohl
IPC分類
H01M4/90; H01M4/92; C25B11/093; C25B11/097
技術(shù)領(lǐng)域
iridium,tin,oxide,ruthenium,noble,bet,catalyst,m2,ato,sb
地域: Ludwigshafen am Rhein

摘要

The present invention relates to a catalyst composition, comprising tin oxide particles which are at least partially coated by a noble metal oxide layer, wherein the composition contains iridium and ruthenium in a total amount of from 10 wt % to 38 wt %, and all iridium and ruthenium is oxidized, —has a BET surface area of from 5 to 95 m2/g, and —has an electrical conductivity at 25° C. of at least 7 S/cm.

說明書

P. Strasser et al., Chem. Sci., 2015, 6, pp. 3321-3328, describe the preparation of metallic iridium nanodendrites which are then deposited on an antimony-doped tin oxide (typically referred to as “ATO”) having a BET surface area of 263 m2/g. Before being tested as a catalyst in an oxygen evolution reaction, the surface of the metallic iridium nanodendrites is electrochemically oxidized in an acidic medium. However, by subjecting metallic iridium to an electrochemical oxidation under acidic conditions, some iridium may dissolve into the surrounding electrolyte. A similar approach is described by P. Strasser et al. in Angew. Chem., Int. Ed., 2015, 54, pp. 2975-2979. Oxide-supported IrNiOx core-shell particles are prepared from bimetallic IrNix precursor alloys using electrochemical Ni leaching and electrochemical oxidation of metallic iridium. As discussed by P. Strasser et al. in J. Am. Chem. Soc., 2016, 138 (38), pp 12552-12563, electrochemical oxidation of metallic iridium nanoparticles generates iridium oxide on the particle surface while the core still contains metallic iridium (i.e. iridium in oxidation state 0).

權(quán)利要求

1
微信群二維碼
意見反饋