The object is solved by a catalyst composition, comprising tin oxide particles, wherein the tin oxide is optionally doped with at least one metal dopant, the tin oxide particles being at least partially coated by a noble metal oxide layer, wherein the noble metal oxide is an iridium oxide or an iridium-ruthenium oxide, wherein the composition
A composition which complies with these features shows a surprisingly high catalytic activity towards an oxygen evolution reaction, and is very stable under highly corrosive conditions. Furthermore, as the total amount of iridium and, if present, ruthenium is kept on a relatively low level, a very cost-efficient catalyst composition is obtained.