白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Electrolytes for improved performance of cells with high-capacity anodes based on micron-scale moderate volume-changing particles

專利號
US11177500B2
公開日期
2021-11-16
申請人
Sila Nanotechnologies Inc.(US CA Alameda)
發(fā)明人
Gleb Yushin; Ashleigh Ward; Gregory Roberts
IPC分類
H01M10/052; H01M10/0561; H01M4/38; H01M10/0569; H01M10/42; H01M10/0568; H01M4/02; H01M10/0567
技術(shù)領(lǐng)域
in,li,lmp,vol,anodes,anode,elr,solvent,fec,e.g
地域: CA CA Alameda

摘要

A metal-ion battery cell is provided that comprises anode and cathode electrodes, a separator, and an electrolyte. The anode electrode may, for example, have a capacity loading in the range of about 2 mAh/cm2 to about 10 mAh/cm2 and comprise anode particles that (i) have an average particle size in the range of about 0.2 microns to about 40 microns, (ii) exhibit a volume expansion in the range of about 8 vol. % to about 180 vol. % during one or more charge-discharge cycles of the battery cell, and (iii) exhibit a specific capacity in the range of about 600 mAh/g to about 2,600 mAh/g. The electrolyte may comprise, for example, (i) one or more metal-ion salts and (ii) a solvent composition that comprises one or more low-melting point solvents that each have a melting point below about ?70° C. and a boiling point above about +70° C.

說明書

In particular, high-capacity (e.g., greater than around 600 mAh/g) (nano)composite anode powders, which exhibit moderately high volume changes (e.g., 8-180 vol. %) during the first charge-discharge cycle, moderate volume changes (e.g., 4-50 vol. %) during the subsequent charge-discharge cycles, an average size in the range of around 0.2 to around 40 microns (more preferably from around 0.4 to around 20 microns) and specific surface area in the range of around 0.3 to around 60 m2/g (more preferably from around 1 to around 30 m2/g) may be advantageous for certain battery applications in terms of manufacturability and performance characteristics. Electrodes with electrode capacity loading from moderate (e.g., 2-4 mAh/cm2) to high (e.g., 4-10 mAh/cm2) are particularly advantageous for use in certain cells (although some cells with lower capacity loadings may be suitable in some designs and applications). Electrodes produced from aqueous slurries (using water-soluble (preferably with a solubility of more than around 1 mg-polymer binder per 1 ml-water (1 mg/ml), or more preferably with a solubility above around 10 mg/ml) binders that typically exhibit smaller swelling in most electrolyte solvents and, in some designs, stronger bonding to some of the active particles) are particularly advantageous for use in certain cells (although some anodes produced with non-aqueous slurries may be suitable in some designs and applications). Examples of such water-soluble binders include, but are not limited to various polymers and copolymers comprising polyvinylpyrrolidone (PVP) polymers and their various salts, carboxymethyl cellulose (CMC) and its various salts, styrene-butadiene rubbers (SBR), various polyvinyl alcohols (PVA) with various degrees of hydrolysis and polyvinyl acetate, polyacrylic acid (PAA) and its various salts, alginic acid and its various salts, and various combinations thereof, among others. Furthermore, in an example, a near-spherical (spheroidal) shape of the (nano)composite anode powder may improve rate performance and volumetric capacity of the anodes in certain applications. It may also be advantageous in some designs to utilize (nano)composite anode powders that comprise virtually no (e.g., 0-1 at. %) vanadium (V), manganese (Mn), iron (Fe), cobalt (Co) and nickel (Ni) atoms in the surface layer (e.g., the top or outer 2-5 nm layer of the anode particles) that get in contact with electrolyte during cycling. Finally, it may also be advantageous in some designs to utilize (nano)composite anode powders that comprise 5-100 at. % carbon (C) atoms in the surface layer (e.g., the top or outer 2-5 nm layer of the anode particles). In addition to some improvements that may be achieved with the formation and utilization of such alloying-type or conversion-type nanocomposite anode materials as well as electrode formulations, additional improvements in cell performance characteristics may also be achieved with improved composition and preparation of electrolytes.

權(quán)利要求

1
微信群二維碼
意見反饋