Embodiments of the present disclosure are directed to reducing one or more of the above-discussed challenges of various types of nanocomposite electrode materials (for example, conversion-type and alloying-type materials). For example, various embodiments of the present disclosure may be implemented with respect to nanocomposite electrode materials that experience certain volume changes during cycling (for example, moderately high volume changes (e.g., 8-180 vol. %) during the first charge-discharge cycle and moderate volume changes (e.g., 4-50 vol. %) during the subsequent charge-discharge cycles), an average particle size in the range of around 0.2 to around 20 microns and a specific surface area in the range of around 0.3 to around 60 m2/g for a broad range of batteries. Further, various embodiments of the present disclosure are further directed to formulating more stable electrodes in moderate (e.g., 2-4 mAh/cm2) and relatively high capacity loadings (e.g., 4-10 mAh/cm2), relatively high packing density (e.g., electrode porosity filled with electrolyte in the range of around 5 to about 35 vol. % after the first charge-discharge cycle) and relatively low binder content (e.g., 1-14 wt. %).