Certain conventional conversion-type electrodes used in Li-ion batteries may suffer from performance limitations. Formation of electrodes from (nano)composites may, at least partially, overcome such performance limitations. For example, (nano)composites may offer reduced voltage hysteresis, improved capacity utilization, improved rate performance, improved mechanical and/or electrochemical stability, reduced volume changes, and other positive attributes. Examples of such (nano)composite cathode materials include, but are not limited to, LiF—Cu—Fe—C nanocomposites, LiF—Cu—Fe—C-metal oxide nanocomposites, FeF2—C nanocomposites, FeF3—C nanocomposites, FeF3—CuF2—C nanocomposites, FeF3—CuF2—C-metal oxide nanocomposites, CuF2—C nanocomposites, LiF—Cu—C nanocomposites, LiF—Cu—C-metal oxide nanocomposites, LiF—Cu—C-polymer nanocomposites, LiF—Cu—C-polymer-metal oxide nanocomposites, LiF—Cu-metal-polymer nanocomposites, and many other porous nanocomposites comprising LiF, FeF3, FeF2, MnF3, CuF2, NiF2, PbF2, BiF3, BiF5, CoF2, SnF2, SnF4, SbF3, SbF5, CdF2, or ZnF2, or other metal fluorides or their mixtures as well as various metal oxides (e.g., as a protective layer, preferably not undergoing conversion reaction with Li in the cathode operational potential range). In some examples, metal fluoride nanoparticles may be infiltrated into the pores of porous carbon (for example, into the pores of activated carbon particles) to form these metal-fluoride-C nanocomposites. In particular, in at least one embodiment, high-capacity (nano)composite cathode powders, which exhibit moderately high (for a cathode) volume changes (e.g., 5-100 vol. %) during the first charge-discharge cycle, moderate volume changes (e.g., 4-50 vol. %) during the subsequent charge-discharge cycles, and an average size (for example, a diameter, in the case of spherical particles) in the range of around 0.2 to around 20 microns may be used for battery applications to improve manufacturability and performance characteristics. Furthermore, in one or more embodiments, a near-spherical (e.g., spheroidal) shape of the (nano)composite particles may increase rate performance and volumetric capacity of the electrodes. While some improvements to cell performance characteristics may be achieved with the formation and utilization of such conversion-type nanocomposite cathode materials and electrode shaping, additional improvements in cell performance characteristics may be achieved via the composition and preparation of electrolytes.