白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Electrolytes for improved performance of cells with high-capacity anodes based on micron-scale moderate volume-changing particles

專利號
US11177500B2
公開日期
2021-11-16
申請人
Sila Nanotechnologies Inc.(US CA Alameda)
發(fā)明人
Gleb Yushin; Ashleigh Ward; Gregory Roberts
IPC分類
H01M10/052; H01M10/0561; H01M4/38; H01M10/0569; H01M10/42; H01M10/0568; H01M4/02; H01M10/0567
技術(shù)領(lǐng)域
in,li,lmp,vol,anodes,anode,elr,solvent,fec,e.g
地域: CA CA Alameda

摘要

A metal-ion battery cell is provided that comprises anode and cathode electrodes, a separator, and an electrolyte. The anode electrode may, for example, have a capacity loading in the range of about 2 mAh/cm2 to about 10 mAh/cm2 and comprise anode particles that (i) have an average particle size in the range of about 0.2 microns to about 40 microns, (ii) exhibit a volume expansion in the range of about 8 vol. % to about 180 vol. % during one or more charge-discharge cycles of the battery cell, and (iii) exhibit a specific capacity in the range of about 600 mAh/g to about 2,600 mAh/g. The electrolyte may comprise, for example, (i) one or more metal-ion salts and (ii) a solvent composition that comprises one or more low-melting point solvents that each have a melting point below about ?70° C. and a boiling point above about +70° C.

說明書

Certain conventional conversion-type electrodes used in Li-ion batteries may suffer from performance limitations. Formation of electrodes from (nano)composites may, at least partially, overcome such performance limitations. For example, (nano)composites may offer reduced voltage hysteresis, improved capacity utilization, improved rate performance, improved mechanical and/or electrochemical stability, reduced volume changes, and other positive attributes. Examples of such (nano)composite cathode materials include, but are not limited to, LiF—Cu—Fe—C nanocomposites, LiF—Cu—Fe—C-metal oxide nanocomposites, FeF2—C nanocomposites, FeF3—C nanocomposites, FeF3—CuF2—C nanocomposites, FeF3—CuF2—C-metal oxide nanocomposites, CuF2—C nanocomposites, LiF—Cu—C nanocomposites, LiF—Cu—C-metal oxide nanocomposites, LiF—Cu—C-polymer nanocomposites, LiF—Cu—C-polymer-metal oxide nanocomposites, LiF—Cu-metal-polymer nanocomposites, and many other porous nanocomposites comprising LiF, FeF3, FeF2, MnF3, CuF2, NiF2, PbF2, BiF3, BiF5, CoF2, SnF2, SnF4, SbF3, SbF5, CdF2, or ZnF2, or other metal fluorides or their mixtures as well as various metal oxides (e.g., as a protective layer, preferably not undergoing conversion reaction with Li in the cathode operational potential range). In some examples, metal fluoride nanoparticles may be infiltrated into the pores of porous carbon (for example, into the pores of activated carbon particles) to form these metal-fluoride-C nanocomposites. In particular, in at least one embodiment, high-capacity (nano)composite cathode powders, which exhibit moderately high (for a cathode) volume changes (e.g., 5-100 vol. %) during the first charge-discharge cycle, moderate volume changes (e.g., 4-50 vol. %) during the subsequent charge-discharge cycles, and an average size (for example, a diameter, in the case of spherical particles) in the range of around 0.2 to around 20 microns may be used for battery applications to improve manufacturability and performance characteristics. Furthermore, in one or more embodiments, a near-spherical (e.g., spheroidal) shape of the (nano)composite particles may increase rate performance and volumetric capacity of the electrodes. While some improvements to cell performance characteristics may be achieved with the formation and utilization of such conversion-type nanocomposite cathode materials and electrode shaping, additional improvements in cell performance characteristics may be achieved via the composition and preparation of electrolytes.

權(quán)利要求

1
微信群二維碼
意見反饋