In a further example, swelling of binders in electrolytes depends not just on the binder composition, but also on the electrolyte compositions. Furthermore, such swelling (and the resulting performance reduction) may correlate with a reduction in elastic modulus upon exposure of binders to electrolytes. In this case, the smaller the reduction in modulus in certain electrolytes, the more stable the binder-linked (nano)composite active particles/conductive additives interface becomes. In an example, a reduction in binder modulus by over 15-20% may result in a noticeable reduction in performance. In a further example, a reduction in the binder modulus by two times (2×) may typically result in a higher performance reduction. In a further example, a reduction in modulus by five or more times (e.g., 5×-500×) may result in an even higher performance reduction. Therefore, in certain embodiments, selecting an electrolyte composition that does not induce significant binder swelling may function to increase cell performance characteristics. In some examples, an electrolyte composition may be selected to ensure that a reduction in the binder modulus does not exceed 30% (e.g., or more preferably, by no more than 10%) when exposed to electrolyte. In anodes which comprise more than one binder composition, an electrolyte composition may be selected to ensure that a reduction in the binder modulus in at least one of the binders does not exceed 30% (e.g., more preferably, by no more than 10%) when exposed to electrolyte.