Examples of the components of the MN Li salts or MN Li salt mixture suitable for use in the electrolyte in one or more embodiments of the present disclosure may include: various lithium phosphates (e.g., lithium hexafluorophosphate, LiPF6) or various lithium organophosphates, various lithium borates and various lithium organoborates (e.g., lithium fluoroborate, LiBF4, lithium bis(oxalato)borate, LiB(C2O4)2 (LIBOB), lithium difluoro(oxalate)borate, LiBF2(C2O4), among others), various lithium imides (e.g., lithium bis(fluorosulfonyl)imide, LiFSI), lithium hexafluoroantimonate (LiSbF6) and various lithium organohexafluoroantimonates, lithium hexafluorosilicate (Li2SiF6) and various organohexafluorosilicates, lithium hexafluoroaluminate (Li3AlF6) and various lithium organofluoroaluminates, various lithium aluminates and various lithium organoaluminates (e.g., lithium tetrachloroaluminate, LiAlCl4, among others), lithium perchlorate (LiClO4), lithium nitrate (LiNO3) and lithium organonitrates, lithium sulfate (Li2SO4) and various lithium organosulfates (LiRSO4), lithium selenite (Li2SeO4) and various lithium organoselenates (LiRSeO4), and others. In an example, using phosphates as an MN Li salt or as a component in an MN Li salt mixture in the electrolyte may provide a combination of high conductivity in the electrolyte and a broad voltage range. In another example, using borates as an MN Li salt or as a component in an MN Li salt mixture in the electrolyte may improve electrolyte (and cell) temperature stability and improve cycle stability of cells comprising either conversion-type cathodes (e.g., fluorides or sulfides or chlorides) or high voltage cathodes. However, a high concentration of borates (e.g., greater than 1 M) may be difficult to achieve or may even be undesirable in certain applications (e.g., in applications requiring a high charging rate, due to low conductivity of electrolytes based solely on lithium borate salts), and thus in certain embodiments borates may be used specifically as a component in an MN Li salt mixture along with one or more other Li salts. In a further example, using imide salts as an MN Li salt or as a component in an MN Li salt mixture in the electrolyte may offer higher thermal stability and conductivity and may not be prone to hydrolysis (e.g., which is advantageous for certain applications where water contaminants are present in electrolytes in small quantities). In some applications, using lithium imides (e.g., LiF SI) as well as imides of other metals (e.g., magnesium bis(fluorosulfonyl)imide, lanthanum bis(fluorosulfonyl)imide, etc.) as an MN Li salt or as a component in an MN Li salt mixture in the electrolyte may improve SEI stability by inducing cross-linking (e.g., when ether or other suitable LMP solvents are present in the electrolyte). In another example, using lithium aluminates as an MN Li salt or as a component in an MN Li salt mixture in the electrolyte may offer improved thermal stability. In another example, lithium nitrate, lithium organonitrates and/or lithium organosulfates as an MN Li salt or as a component in an MN Li salt mixture in the electrolyte may improve SEI properties (e.g., stability, ionic conductivity, etc.) and/or cell stability during long-term cycling.