白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Electrolytes for improved performance of cells with high-capacity anodes based on micron-scale moderate volume-changing particles

專利號
US11177500B2
公開日期
2021-11-16
申請人
Sila Nanotechnologies Inc.(US CA Alameda)
發(fā)明人
Gleb Yushin; Ashleigh Ward; Gregory Roberts
IPC分類
H01M10/052; H01M10/0561; H01M4/38; H01M10/0569; H01M10/42; H01M10/0568; H01M4/02; H01M10/0567
技術(shù)領(lǐng)域
in,li,lmp,vol,anodes,anode,elr,solvent,fec,e.g
地域: CA CA Alameda

摘要

A metal-ion battery cell is provided that comprises anode and cathode electrodes, a separator, and an electrolyte. The anode electrode may, for example, have a capacity loading in the range of about 2 mAh/cm2 to about 10 mAh/cm2 and comprise anode particles that (i) have an average particle size in the range of about 0.2 microns to about 40 microns, (ii) exhibit a volume expansion in the range of about 8 vol. % to about 180 vol. % during one or more charge-discharge cycles of the battery cell, and (iii) exhibit a specific capacity in the range of about 600 mAh/g to about 2,600 mAh/g. The electrolyte may comprise, for example, (i) one or more metal-ion salts and (ii) a solvent composition that comprises one or more low-melting point solvents that each have a melting point below about ?70° C. and a boiling point above about +70° C.

說明書

Examples of OFADD (or OFADD components) suitable for use in the electrolyte in one or more embodiments of the present disclosure may include: (i) various unsaturated organic compounds (e.g., which may provide sites for free radical polymerization of the surface layer under reductive or oxidative conditions; such reaction within the cell may improve robustness and properties of the SEI/protective surface layer on the electrodes) or other types of initiator (or catalyst) molecules; (ii) various sulfur- or selenium-based organic additives (e.g., which may improve SEI stability or rate performance and, in the case of selenium, may improve electrical connectivity within the anode; such additives may possess higher reduction potentials than their carbonate counterparts, and therefore may form SEI on the anode at a higher potential, which may be advantageous in applications that benefit from improved SEI stability; in some examples, the addition of such compounds may result in the formation of a lithium-oxy-sulfite-comprising SEI layer); (iii) various boron-based organic additives (e.g., which may similarly improve the SEI as boron-based organic additives may decompose at higher potentials than carbonate based electrolyte components); (iv) various isocyanate-based additives (e.g., which also may improve SEI properties, for example, upon decomposition into either polyamines or polyamides or other favorable compounds); (v) various ionic compounds (e.g., which may improve SEI stability or rate performance, such as by acting as sacrificial components that may favorably tune the interfacial chemistry); (vi) various inorganic and organic salts of rare earth elements (e.g., La, Ce, Dy, Eu, Tb, Pr, etc.), magnesium (Mg), calcium (Ca) or strontium (Sr) (e.g., which may improve SEI stability and properties and cell stability and properties). It will be appreciated that certain salts noted above as optional components in the OFADD, if used in the electrolyte, may alternatively be considered part of the ADD salt or ADD salt mixture. For example, the ADD salt or ADD salt mixture may comprise Li or Mg or Ca nitrates, organonitrates, sulfides, polysulfides, sulfates, organosulfates, selenides, polyselenides, selenites, and organoselenates, some or all of which may also be used in the OFADD.

權(quán)利要求

1
微信群二維碼
意見反饋