白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Electrolytes for improved performance of cells with high-capacity anodes based on micron-scale moderate volume-changing particles

專利號
US11177500B2
公開日期
2021-11-16
申請人
Sila Nanotechnologies Inc.(US CA Alameda)
發(fā)明人
Gleb Yushin; Ashleigh Ward; Gregory Roberts
IPC分類
H01M10/052; H01M10/0561; H01M4/38; H01M10/0569; H01M10/42; H01M10/0568; H01M4/02; H01M10/0567
技術(shù)領(lǐng)域
in,li,lmp,vol,anodes,anode,elr,solvent,fec,e.g
地域: CA CA Alameda

摘要

A metal-ion battery cell is provided that comprises anode and cathode electrodes, a separator, and an electrolyte. The anode electrode may, for example, have a capacity loading in the range of about 2 mAh/cm2 to about 10 mAh/cm2 and comprise anode particles that (i) have an average particle size in the range of about 0.2 microns to about 40 microns, (ii) exhibit a volume expansion in the range of about 8 vol. % to about 180 vol. % during one or more charge-discharge cycles of the battery cell, and (iii) exhibit a specific capacity in the range of about 600 mAh/g to about 2,600 mAh/g. The electrolyte may comprise, for example, (i) one or more metal-ion salts and (ii) a solvent composition that comprises one or more low-melting point solvents that each have a melting point below about ?70° C. and a boiling point above about +70° C.

說明書

For example, the use of methyl butyrate (MB) and other low melting point esters (including those having 5 carbon atoms in the backbone) in electrolyte in accordance with one or more embodiments of the present disclosure may yield better performance at both low temperatures, room temperatures, and even high temperatures (e.g., despite the negative reputation esters have for gassing and poor performance at higher temperatures, and expected poor performance at high voltages).

FIG. 7 illustrates different impacts of varying the LMP co-solvent % (e.g., MB %), in combination with linear carbonate co-solvents, in the example electrolyte compositions on cell performance, where the cell comprises high voltage LCO and a (nano)composite Si-comprising volume-changing anode with low specific surface area of the active (nano)composite particles (approximately 5 m2/g) in accordance with an embodiment of the disclosure. In this illustrative example, LiPF6 was used as the MN Li salt. Cells (with an anode mass loading of approximately 2 mg/cm2) were cycled between 2.5V and 4.4V at C/2 at a relatively high temperature of 45° C. Long term cycling data at 45° C. for full cells with electrolytes BKR (20 vol. % EMC/58 vol. % MB), ELR-207 (78 vol. % DEC), and ELR-210 (20% DEC/58% MB) surprisingly showed no strong performance dependence on the concentration of MB in the electrolyte in spite of the combination of high cell charge voltage and high cycling temperature (where one may intuitively expect cells with high MB content might rapidly fail). Under these test conditions, capacity retention, mid-cycle hysteresis, and cycle life projections suffered no particular disadvantages despite the use of electrolytes containing MB.

權(quán)利要求

1
微信群二維碼
意見反饋