For example, the use of methyl butyrate (MB) and other low melting point esters (including those having 5 carbon atoms in the backbone) in electrolyte in accordance with one or more embodiments of the present disclosure may yield better performance at both low temperatures, room temperatures, and even high temperatures (e.g., despite the negative reputation esters have for gassing and poor performance at higher temperatures, and expected poor performance at high voltages).
FIG. 7 illustrates different impacts of varying the LMP co-solvent % (e.g., MB %), in combination with linear carbonate co-solvents, in the example electrolyte compositions on cell performance, where the cell comprises high voltage LCO and a (nano)composite Si-comprising volume-changing anode with low specific surface area of the active (nano)composite particles (approximately 5 m2/g) in accordance with an embodiment of the disclosure. In this illustrative example, LiPF6 was used as the MN Li salt. Cells (with an anode mass loading of approximately 2 mg/cm2) were cycled between 2.5V and 4.4V at C/2 at a relatively high temperature of 45° C. Long term cycling data at 45° C. for full cells with electrolytes BKR (20 vol. % EMC/58 vol. % MB), ELR-207 (78 vol. % DEC), and ELR-210 (20% DEC/58% MB) surprisingly showed no strong performance dependence on the concentration of MB in the electrolyte in spite of the combination of high cell charge voltage and high cycling temperature (where one may intuitively expect cells with high MB content might rapidly fail). Under these test conditions, capacity retention, mid-cycle hysteresis, and cycle life projections suffered no particular disadvantages despite the use of electrolytes containing MB.