白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Electrolytes for a metal-ion battery cell with high-capacity, micron-scale, volume-changing anode particles

專利號(hào)
US11177509B2
公開(kāi)日期
2021-11-16
申請(qǐng)人
Sila Nanotechnologies, Inc.(US CA Alameda)
發(fā)明人
Gleb Yushin; Ashleigh Ward
IPC分類
H01M10/0569; H01M4/525; H01M4/505; H01M10/0568; H01M10/0525; H01M4/38
技術(shù)領(lǐng)域
elr,vol,in,li,lmp,about,solvent,anode,fec,solvents
地域: CA CA Alameda

摘要

In an embodiment, a metal-ion battery cell comprises an anode electrode, a cathode electrode, a separator, and electrolyte ionically coupling the anode electrode and the cathode electrode. The anode electrode is a high-capacity electrode (e.g., in the range of about 2 mAh/cm2 to about 10 mAh/cm2) and the cathode electrode comprises an intercalation-type active material including at least Li, one or more metals, and oxygen. The electrolyte includes a solvent composition having low-melting point (LMP) solvent(s) in the range from about 10 vol. % to about 95 vol. % of the solvent composition.

說(shuō)明書(shū)

Through various studies, the inventors have found that cells comprising electrodes based on high capacity nanocomposite anode particles or powders (comprising conversion- or alloying-type active materials) that experience certain volume changes during cycling (moderately high volume changes (e.g., an increase by about 8-about 160 or about 180 vol. % or a reduction by about 8-about 70 vol. %) during the first charge-discharge cycle and moderate volume changes (e.g., about 4-about 50 vol. %) during the subsequent charge-discharge cycles) and an average size in the range from around 0.2 to around 40 microns (such as Si-based nanocomposite anode powders, among many others) may benefit from specific compositions of electrolytes that provide significantly improved performance (particularly for high capacity loadings).

For example, (i) continuous volume changes in high capacity nanocomposite particles during cycling in combination with (ii) electrolyte decomposition on the electrically conductive electrode surface at electrode operating potentials (e.g., mostly electrochemical electrolyte reduction in the case of Si-based anodes) may lead to a continuous (even if relatively slow) growth of a solid electrolyte interphase (SEI) layer on the surface of the nanocomposite particles.

權(quán)利要求

1
微信群二維碼
意見(jiàn)反饋