Examples of materials that exhibit moderately high volume changes (e.g., 8-180 vol. %) during the first charge-discharge cycle and moderate volume changes (e.g., 5-50 vol. %) during the subsequent charge-discharge cycles include (nano)composites comprising so-called conversion-type (which includes both so-called chemical transformation and so-called “true conversion” sub-classes) and so-called alloying-type active electrode materials. In the case of metal-ion batteries (such as Li-ion batteries), examples of such alloying-type electrode materials include, but are not limited to, silicon, germanium, antimony, aluminum, magnesium, zinc, gallium, arsenic, phosphorous, silver, cadmium, indium, tin, lead, bismuth, their alloys, and others. In the case of metal-ion batteries (such as Li-ion batteries), examples of such conversion-type electrode materials include, but are not limited to silicon oxides, germanium oxides, antimony oxides, aluminum oxides, magnesium oxides, zinc oxides, gallium oxides, cadmium oxides, indium oxides, tin oxides, lead oxides, bismuth oxides, their alloys, and others. These materials typically offer higher gravimetric and volumetric capacity than so-called intercalation-type electrodes commonly used in commercial metal-ion (e.g., Li-ion) batteries. Alloying-type electrode materials are particularly advantageous for use in certain high-capacity anodes for Li-ion batteries. Silicon-based alloying-type anodes may be particularly attractive for such applications.
Accordingly, there remains a need for improved batteries, components, and other related materials and manufacturing processes.
Embodiments disclosed herein address the above stated needs by providing improved batteries, components, and other related materials and manufacturing processes.