In some embodiments, a slave interrogator device may not include a transmit antenna for transmitting RF signals to a target device nor transmit circuitry for generating RF signals for transmission. This may reduce the cost of manufacturing, the size, and the power consumption of the slave interrogator relative to an interrogator device that performs both transmit and receive functions. For example, the size of a receive-only interrogator die substrate may be reduced because it does not need to accommodate a transmit antenna. As another example, the size of the semiconductor die in the receive-only interrogator may be reduced because it does not need to include transmit circuitry.
In some embodiments, the master interrogator and one or more slave interrogators may be phase coherent with one another. In some embodiments, phase coherence among the master and slave interrogators may be achieved by using synchronization circuitry to provide all the oscillators a common reference signal (e.g., a chirped direct digitally synthesized reference signal or a signal generated by fixed-frequency reference oscillator). The common reference signal may embody RF signal synthesis information that each of the slave interrogators may utilize for generating a respective local version of the RF signal transmitted to the target device by the master interrogator. In turn, at a particular slave interrogator, the local version of the RF signal transmitted to the target device by the master interrogator may be processed phase coherently with the RF signal received by the slave interrogator from the target device. In this way, each slave interrogators may determine a distance (or at least generate a mixed RF signal indicative of the distance) between the slave interrogator and the target device.