白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Phased array antenna with edge-effect mitigation

專利號
US11177571B2
公開日期
2021-11-16
申請人
RAYTHEON COMPANY(US MA Waltham)
發(fā)明人
David Liu; Kenneth S. Komisarek; John Yorko
IPC分類
H01Q9/04; H01Q21/06; H01Q1/52
技術(shù)領(lǐng)域
antenna,dielectric,array,corner,elements,substrate,in,patch,element,mutual
地域: MA MA Waltham

摘要

Phased array antenna systems with antenna elements having substrates with varying dielectric constants selected to reduce the self-return signal of corner elements in the array. In one example, a phase array antenna system includes a plurality of stacked-patch microstrip antenna elements arranged in a two-dimensional array, each stacked-patch microstrip antenna element of the plurality of stacked-patch microstrip antenna elements including a pair of conductive patches disposed above a ground plane on a dielectric substrate. The dielectric substrate of corner stacked-patch microstrip antenna elements in the array has a dielectric constant lower than a dielectric constant of the dielectric substrate of non-corner stacked-patch microstrip antenna elements in the array.

說明書

According to certain embodiments, the lower dielectric substrate material used for the corner elements 200a can be realized by an additive manufacturing (“3-D printing”) technique at precision. FIGS. 8A and 8B illustrate an example of the substrate 230 that can be used according to certain embodiments. FIG. 8A is a top view of the example of the substrate 230, and FIG. 8B is a corresponding side perspective view. According to certain embodiments, the density distribution of the substrate 230 can be manipulated by introducing air cavities 232 or voids to form a lattice-type structure, as shown in FIGS. 8A and 8B. Density variation, thus dielectric constant modulation, can be made quickly, conveniently and precisely by 3-D printing, whereas conventional manufacturing processes, such as milling, for example, are slow, waste material (and are therefore costly), may lack precision, and may be difficult or impractical to implement in certain circumstances. Using an additive manufacturing process, the substrate density can be manipulated by the cavity and/or voids formation via frame structuring, as illustrated in FIG. 8A and FIG. 8B, within the sample, for example. As a result, the process consumes the materials in a most effective way with minimum compromise of the mechanical rigidity of the substrate 230. In certain other examples, the density distribution of the substrate 230 can be manipulated by controlling the 3-D printing speed.

權(quán)利要求

1
微信群二維碼
意見反饋