Referring to FIG. 2, an active filter node is disclosed and generally designated 200. In a particular embodiment, the active filter node 200 corresponds to one of the active filter nodes 120, 122, 124, or 126 of FIG. 1. The active filter node 200 may include a capacitively-coupled radio frequency (RF) bi-directional active filter node. The active filter node 200 includes an amplifier 220 coupled to a radiating element 230 on one side of the amplifier 220 and to a radiating element 232 on another side of the amplifier 220. In a particular embodiment, each of the radiating elements 230 and 232 corresponds to one of the radiating elements 130, 132, 134, and 136 of FIG. 1. In a particular embodiment, the amplifier 220 may include a capacitively-coupled amplifier, a bi-directional amplifier, a radio frequency amplifier, or any combination thereof. The active filter node 200 may, for example, include a Bessel filter transfer function. The active filter node 200 may implement a bi-quadratic transfer function which may synthesize other filters. The active filter node 200 may include a splitter, a photo-voltaic detector, a rectifying photo-voltaic detector, or a combination thereof (e.g., a splitter and photo-voltaic detector 224). The active filter node 200 may be coupled to the power delivery optical fiber 172 via the splitter and photo-voltaic detector 224. In a particular embodiment, the splitter and photo-voltaic detector 224 may include a splitter and a rectifying photo-voltaic detector. The active filter node 200 may include a switch 222. In a particular embodiment, the switch 222 may include a bi-polar transistor, a field effect transistor, an analog photo-responsive switch, an analog photo-responsive resistor, or a combination thereof. The switch 222 may be coupled to an optical fiber 260. In a particular embodiment, the optical fiber 260 corresponds to one of the optical fibers 160, 162, 164, or 166 of FIG. 1.