Therefore, with the interior permanent magnet motor according to an embodiment of the disclosure, the number of permanent magnets may be reduced to half and the performance equivalent to that of the conventional interior permanent magnet motor may be achieved.
Flux barriers 25, 26, 27, and 28 are provided on the left and right sides of the opposite ends of each of the permanent magnets 30 adjacent to the outer circumferential surface of the rotor 20, that is, a first end 31 and a second end 32. In other words, as illustrated in 
The plurality of flux barriers 25, 26, 27, and 28 may be formed in a plurality of voids adjacent to the outer circumferential surface of the rotor 20 and provided at predetermined intervals in the circumferential direction of the rotor 20. In other words, each of the flux barriers 25, 26, 27, and 28 is formed along the outer circumferential surface of the rotor 20 with a predetermined width and length. For example, each of the flux barriers 25, 26, 27, and 28 may be formed in a substantially rectangular hole. Therefore, the flux barriers 25, 26, 27, and 28 are not opened toward the teeth 13 of the stator 10, and iron core portions 20a forming the outer circumferential surface of the rotor 20 are present between the flux barriers 25, 26, 27, and 28 and the teeth 13 of the stator 10.