As represented schematically in FIG. 1, the e-charger 102 may be disposed upstream of the turbocharger 112. For example, the pressurized fluid stream 115 output from the e-charger 102 may mix with the exhaust gas stream 130 and/or otherwise provide air input to the turbine section 119 to turn the turbine wheel 126 and, thus, rotate the compressor wheel 128 of the turbocharger 112. However, it will be appreciated that the e-charger 102 may be incorporated differently within the vehicle without departing from the scope of the present disclosure. For example, the e-charger 102 may be disposed downstream of the turbocharger 112 in some embodiments. In both cases, the e-charger 102 may increase air flow to the engine 134 and boost engine performance. The e-charger 102 may reduce transient time and turbo lag. The e-charger 102 may also provide benefits, such as reduced emissions, improved fuel efficiency, etc. Also, the size of the turbocharger 112 may be relatively small due to the inclusion of the e-charger 102.
Also, it will be appreciated that the e-charger 102 may be incorporated in a system that does not include a turbocharger 112. For example, in additional embodiments, the e-charger 102 may be configured to feed air to a fuel cell of a vehicle.