Since the second groove portion of the second end plate supplies the refrigerant supplied from the first refrigerant flow path hole to the second refrigerant discharge hole, the refrigerant discharged from the second refrigerant discharge hole is supplied to the second coil end. Since the second groove portion of the second end plate also supplies the refrigerant supplied from the first refrigerant flow path hole to the second refrigerant flow path hole, the rotor core can also be cooled from the inside by the refrigerant flowing through the second refrigerant flow path hole.
Since the first refrigerant discharge hole on the first end plate communicates with the second refrigerant flow path hole, the refrigerant flowing through the second refrigerant flow path hole is discharged from the first refrigerant discharge hole and supplied to the first coil end.
Therefore, the rotor core can be cooled from the inside by the refrigerant supplied to the first refrigerant flow path and the second refrigerant flow path and the first coil end and the second coil end can be cooled by the refrigerant discharged from the first refrigerant discharge hole and the second refrigerant discharge hole.
(2) The rotating electrical machine according to (1), in which
an outer diameter side end portion (outer diameter side apex portion 26e) of the second refrigerant flow path hole is located further on a radially outer side than an outermost diameter portion (outermost diameter portion 25a) of the first refrigerant flow path hole.