In some embodiments, the phase currents in the stator windings 28 can be adjusted on a per-quadrant basis to create a net radial force on the rotor 24 to control the translational radial position of the rotor 24, which may be used, for example, to keep the rotor 24 centered. The electrical current in each individual stator winding 28 may be adjusted independently. These adjustments are typically very small changes in current compared to the normal, torque producing, phase currents, which may be generated, for example, by one or more traditional algorithms for three-phase motor speed control (e.g. trapezoidal, sine wave, field-oriented control) in a variable-frequency motor drive. The rotor position control method of the present disclosure and/or other algorithms or techniques providing a net radial force on the rotor 24 may be used together with any of these or other motor speed control algorithms.