In an embodiment, an exposed surface of at least one of the at least one second electrically conductive layer structure of the second component carrier is covered with a corrosion protection. For instance, the second component carriers may be stored in a warehouse as vertical interconnect functionality providing constituents for manufacturing an electronic device for a longer time. In order to prevent undesired corrosion of such second electrically conductive layer structures during storage, their exposed electrically conductive layer structures (preferably made of copper) may be covered at least partially with an anti-corrosive coating. Such a coating may be configured so that it is easily removable (for instance by simple chemical treatment) directly before connecting the respective second component carrier to a first component carrier. It is also possible that the coating is automatically removed when connecting the second component carrier with the first component carrier, for instance under the influence of heat, pressure or an adhesive material accomplishing the connection.
In an embodiment, the method comprises inserting a component in the cavity next to the second component carrier, in particular placing the component in the cavity between two second component carriers with a stacking direction angled with regard to a stacking direction of the first component carrier. When using a common cavity for integrating both a component and second component carrier(s) in the first component carrier, a simple manufacturing process may be combined with a direct spatial neighbour relationship of the mentioned constituents. The latter translates, in turn, into short electric coupling paths between component and second component carrier.