The thawing chamber 114 may be enclosed by the vertical clapboard 111, the horizontal clapboard 112 and the bottom plate and two transverse side plates of the cavity 110. The upper electrode plate 140a may be disposed on the lower surface of the horizontal clapboard 112, and the lower electrode plate 140b may be disposed on the upper surface of the bottom plate of the cavity 110. The vertical clapboard 111 may be provided with a first wire passing port 1112, so that the radio frequency generation module 130 is electrically connected with the upper electrode plate 140a through the first wire passing port 1112. The cavity 110 may further include a baffle plate 113 extending upward from a front side end of the horizontal clapboard 112 along a vertical direction to the top plate of the cavity 110, to prevent the exposure of the detection module 150 and the load compensation module 160 from affecting the aesthetics of the thawing device 100.
In some embodiments, the rear plate of the cavity 110 may be provided with a device air inlet 115, and the vertical clapboard 111 at a rear side of the thawing chamber 114 may be provided with a thawing air inlet 1111, so that the air outside the thawing device 100 enters the thawing chamber 114 of the thawing device 100 through the device air inlet 115 and the thawing air inlet 1111. Side plates at two transverse sides of the thawing chamber 114 may be provided with device air outlets 118, so that the gas in the thawing chamber 114 is discharged to the outside of the thawing device 100 through the device air outlets 118.