When the conventional encoder attempts to encode frame 350, the region 301 has reverted to a similar state to that of frame 310. This instantaneous change, for example, could be due to the inventory window being closed in the video game. Because the conventional encoder uses immediately prior frame 340 as the reference when encoding frame 350, there is a low correlation between reference frame 340 and frame 350, which again results in a compression challenge.
The conventional encoder continues to encode frames including frame 360 using immediately prior frames as respective reference frames. Here, the conventional encoder is not presented with compression challenges due to the high inter-frame correlation until the encoder reaches frame 370. Once again, the instantaneous change in region 301 from frame 360 to frame 370 results in a compression challenge.
In real-time use cases such as video game streaming or remote desktop display, low latency is a critical performance factor. Transmitting an encoded video bit stream corresponding to the input content must take less than some pre-defined time budget, e.g. 10 ms, otherwise a corresponding frame rate is not supportable. Likewise, an associated bandwidth constrains the maximum encoded frame size. When a conventional encoder encounters an instantaneous change, the conventional encoder is constrained from using enough bits to guarantee high-quality encoding. As such, encoding quality suffers due to the low-correlation of the reference frame to the current frame. This results in the current frame being encoded with poor quality. The poorly encoded frame is then used as a low-quality reference frame for the next frame, which results in a cascading problem.