Application of mmWave communication is beneficial since the mmWave communication enables communication devices to send and receive large amounts of data (e.g., 0 to 1000 gigabytes) in an amount of time that is acceptable to users or within some predetermined safety standard. The mmWave communication has a great potential for massive consumer applications (e.g., IEEE802.11ad/WiGig for high-speed and short-range communication; 5G cellular communications; automated driving applications, etc.). The automated driving applications include, but are not limited to: (1) sharing local sensor information recorded by sensors such as a LIDAR, radar, camera, etc., with connected vehicles and infrastructure devices to expand sensor coverage and obtain non-line-of-sight (NLOS) view so as to achieve a safer, efficient and proactive driving; (2) uploading local sensor information to a cloud server via infrastructures for high-definition (HD) 3D map generation at the cloud server so that a global HD 3D map can be kept updated; and (3) downloading a HD 3D map for automated driving from infrastructures on demand when a vehicle enters a new city so that there is no need to store all 3D map data of an entire country in the vehicle's storage and it is easy to keep the 3D map data updated. Transmission and reception of HD 3D maps and vehicle sensor information has many applications. One application that may benefit from the ability to transmit and receive HD 3D maps and vehicle sensor information is automated vehicles, drones, and robots.