For example, the recommended beam alignment setting includes a first recommended beam lobe for the first endpoint and a second recommended beam lobe for the other endpoint, and the V2X radio 143 of the first endpoint 101 and the V2X radio 143 of the other endpoint are modified to use the first recommended beam lobe and the second recommended beam lobe respectively to exchange the mmWave message (e.g., the operation module 210 modifies an operation of the V2X radio 143 of the first endpoint 101 so that the V2X radio 143 of the first endpoint 101 uses the first recommended beam lobe for the exchanging of the mmWave message, and the operation module 210 modifies an operation of the V2X radio 143 of the other endpoint so that the V2X radio 143 of the other endpoint uses the second recommended beam lobe for the exchanging of the mmWave message).
In some embodiments, the recommended beam alignment setting provides an improved mmWave communication performance for one or more of the V2X radio 143 of the first endpoint 101 and the V2X radio 143 of the other endpoint, where the improved mmWave communication perform includes a reduction of beam alignment overhead (e.g., a reduced beam alignment training time, a reduced amount of computing resources needed to perform the beam alignment training, etc.).
In some embodiments, the operation module 210 generates mmWave performance data related to the exchanging of the mmWave message that is performed using the recommended beam alignment setting. For example, the mmWave performance data includes one or more of an achieved data rate, a received signal strength, etc. The operation module 210 uploads the mmWave performance data to the server 106.