In this case, in the case that each antenna element may include a transceiver unit (TXRU) to enable adjustment of transmit power and phase, independent beamforming per frequency resource is available. However, installing TXRUs in all of the about 100 antenna elements is less feasible in terms of cost. Therefore, a method of mapping a plurality of antenna elements to one TXRU and adjusting a direction of a beam using an analog phase shifter has been considered. However, the analog beamforming method is disadvantageous in that frequency selective beamforming is impossible because only one beam direction is generated over the entire band.
As an intermediate form of digital beamforming (BF) and analog beamforming (BF), hybrid BF with B TXRUs that are fewer than Q antenna elements may be considered. In this case, the number of beam directions that can be transmitted at the same time is limited to B or less, which depends on the connection scheme of B TXRUs and Q antenna elements.
In the present disclosure, a proposed method is described on the basis of the new RAT (NR) system for convenience of description. However, the proposed method can be extended to other systems such as 3GPP LTE/LTE-A systems in addition to the new RAT system.
To aid in understanding of the following description, 3GPP TS 38 series (38.211, 38.212, 38.213, 38.214, 38.331, etc.) may be referred to.
<NR Frame Structure and Physical Resources>
In the NR system, DL and UL transmission is performed through frames having a duration of 10 ms and each frame includes 10 subframes. Accordingly, one subframe corresponds to 1 ms. Each frame is divided into two half frames.